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INFLUENCE OF THE METHODS OF CONSTRUCTING 

EPHEMERIDES OF MAJOR PLANETS AND THE MOON ON THE 

ACCURACY OF PREDICTING MOTION OF ASTEROIDS 

A. P. Baturin UDC 521.1:523.44-325 

The jump-like behavior of coordinates of planets and the Moon as well as of their derivatives retrieved from 
modern ephemerides is demonstrated. Discontinuities of the coordinates and derivatives take place at the 
junctions of the adjacent interpolation intervals each of which in the ephemerides has its own set of the 
coefficients of the Chebyshev polynomials. This is demonstrated on an example of the ephemerides DE431 and 
EPM2011. The precision of predicted motion of asteroids is estimated with allowance for perturbations from 
the ephemerides DE431 and EPM2011. It is demonstrated that the step of numerical integration of the 
equations of motion must be adjusted to the junctions of the ephemeris intervals; in this case, the precision of 
integration increases by several orders of magnitude. In addition, to eliminate discontinuities of the 
coordinates and of their first derivatives arising in calculations with quadruple precision, an algorithm of 
smoothing ephemerides at the junctions of interpolation intervals is developed that allows the discontinuities of 
the coordinates and their derivatives up to any preset order to be eliminated. The algorithm is used to smooth 
the ephemerides DE431 and EPM2011 up to the fourth-order derivatives. It is demonstrated that in 
calculations with the quadruple precision, the application of the smoothed ephemerides allows the accuracy of 
numerical integration to be increased approximately by 10 orders of magnitude. 
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In [1–4] the author has published results of investigations into the problem of increasing precision of numerical 

prediction of asteroid motion using modern ephemerides published by the Jet Propulsion Laboratory (USA) [5–7] and 
Institute of Applied Astronomy of the Russian Academy of Sciences [8, 9] to take into account perturbations from 
major planets and the Moon. In [1–4], the jump-like behavior of the coordinates of planets and their derivatives 
retrieved from ephemerides DE405, DE406, DE408, DE421, DE422, DE423, and DE430 was demonstrated, and 
methods of eliminating the influence of this behavior on the precision of predicted motion of asteroids were considered. 
In the present work, results of analogous investigations are presented for the latest ephemerides DE431 [7] and 
EPM2011 [8, 9] published by the present time. 

Recall that in modern ephemerides of the major planets and the Moon, the information on the coordinates of 
objects is stored in compressed form based on the interpolation Chebyshev polynomials. Structures of different 
ephemerides as a whole are identical: all time interval covered by the ephemerides is subdivided into a fixed number of 
small interpolation intervals with a fixed set of the coefficients of the Chebyshev polynomials for each interval. 
Moreover, at the junctions of the adjacent intervals, the continuity of the interpolated coordinates and their first left and 
right derivatives retained, but the derivatives of the second and higher orders are discontinuous. In addition, in all 
ephemerides published by the present time the coefficients of the Chebyshev polynomials are given only with 16 
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decimal places, that is, in the form of 64-bit computer numbers with floating point (the so-called double-precision 
numbers). Therefore, the interpolated coordinates and their first derivatives are continuous at the junctions of the 
adjacent intervals only for calculations with double precision. However, calculations with increased precision are more 
often used nowadays, for example, using 80-bit computer numbers with floating point which have 19 decimal places 
[10, 11] or 128-bit numbers with 34 decimal places (the so-called quadruple precision numbers). Such high computer 
precision is necessary, for example, to search for asteroid orbits leading to a collision with the Earth [12–14]. In this 
case, the interpolated coordinates and their first derivatives are discontinuous at the junctions of the ephemeris intervals 
approximately in the 15th–16th decimal places.  

The above-indicated discontinuities are inevitably manifested through the behavior of the right sides of the 
differential equations describing asteroid motion, since the right sides depjunction continuously on the coordinates of 
the perturbing bodies. Therefore, they are also discontinuous at the junctions of the ephemeris intervals, namely, the 
second- and higher-order derivatives are discontinuous in double-precision calculations; in calculations with higher-
order precision, their right sides and their first, second, etc. derivatives are discontinuous. Such behavior of the right 
sides decreases the precision of numerical integration of the equations of motion in both cases, since all methods of 
numerical integration, as a rule, suggest continuity of functions in the right sides and their smoothness up to the serial 
order as high as possible. 

Nowadays there are two approaches to the construction of ephemerides for planets and the Moon. According to 
the first approach used in the American ephemerides DE, the coefficients of the Chebyshev polynomials required for 
interpolation of only coordinates of objects are given in ephemerid files. To obtain the derivatives of the coordinates 
(for example, velocities or accelerations), the expressions for the interpolated coordinates must be differentiated the 
required number of times. The second approach is used in Russian ephemerides EPM [8, 9], according to which 
coefficients for interpolation of object velocities are given in the ephemerides, coordinates of these objects are 
calculated by integration of expressions for their velocities, and integration constants are also given in the ephemerides. 
The derivatives of the velocities are calculated in the same way as in the American ephemerides. 

Let us consider the first approach to the ephemerid construction. The expression for any interpolated coordinate 
(designated by x) and its derivatives has the form 

 ( )( ) ( )
0 0( ) ( ) ( )kk k

n nx a p a pτ = τ + + τ ,  (1) 

where ip  are the Chebyshev polynomials of degree i, ia  are the coefficients given in the ephemerides, n is the number 

of the coefficients for the given coordinate minus unity, k is the serial order of the derivative (k = 0 corresponds to the 
coordinate itself), and τ is the normalized time varying from –1 to +1 in the interpolation interval. The Chebyshev 
polynomials and their derivatives in Eq. (1) are calculated from the recurrent relations [3] 
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Within the limits of the second approach, the velocity components are calculated by the formula analogous to 
formula (1). Therefore, having designated by v any of the three velocity components, we can write 

 ( )( ) ( )
0 0( ) ( ) ( )kk k

n nv a p a pτ = τ + + τ .  (3) 

The expression for the coordinates is obtained by integration over time of formula (3) at k = 0: 
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number N of the junction is plotted on the horizontal axis). The k values changed from 0 to 5, that is, jumps of the 
coordinates and their derivatives up to the fifth order were calculated. For the ephemerides EPM2011, k in Fig. 1 also 
denotes the serial order of the derivative of the coordinates rather than of the velocities, as in formula (3). All 
calculations were carried out with quadruple precision, the required computing programs were written by the author 
except for a small part of the program code devoted to calculations of the primitive functions for the Chebyshev 
polynomials given by Eq. (5) that was borrowed from (ftp://quasar.ipa.n w.ru/incoming/EPM/Fortran/calc_eph. F). 

As can be seen from Fig. 1, the coordinates and their first derivatives in the ephemerides DE431 have about the 
same jumps in the 16th–17th decimal places, the second derivatives jump in the 10th–12th decimal places, the third 
derivatives jump in the 7th–8th decimal places, the fourth derivatives jump in the 5th–6th decimal places, and the fifth 
derivatives jump in the 2nd–3rd decimal places. Jumps of the higher-order derivatives become comparable with their 
values and are not shown in Fig. 1. As to the ephemerides EPM2011, as can be seen from Fig. 1, the behavior of the 
coordinates and their first derivatives differs: whereas the coordinates jump approximately in the 15th–16th decimal 
places, and their first derivatives jump already in the 13th–14th decimal places. Jumps of higher-order derivatives in both 
ephemerides were approximately identical. 

Such behavior of the coordinates and their derivatives is characteristic not only of the barycenter of the Earth-
Moon system, but also of all other objects in the ephemeris data; therefore, no illustrations for them are presented here. 
We note that such behavior is peculiar to all American ephemerides and has been demonstrated, for example, in [2, 4] 
for the ephemerides DE422 and DE430 [5]. 

Since in double-precision calculations the coordinates of ephemeris objects and their first derivatives are 
practically continuous and only the derivatives of the second and higher orders are discontinuous, an obvious method of 
elimination of the influence of these discontinuities on the precision of numerical integration is adjustment of the 
integration step to the junctions of the ephemeris intervals. Such adjustment can be implemented by additional 
correction of the integration step [2] consisting in the check of falling of the interval junctions within the limits of the 
step and, in case of their falling, in the termination of this step at this junction. The application of the above-indicated 
correction will allow us to eliminate completely the influence of discontinuities of the second and higher order 
derivatives, since in each step we will solve the Cauchy problem the input data for which are only the coordinates and 
their first derivatives. 

In calculations with extended precision (for example, with quadruple precision), already the coordinates 
themselves and their first derivatives are discontinuous; as demonstrated above, they are discontinuous approximately in 
the 13th –17th decimal place depjunctioning on the employed ephemerides. To eliminate these discontinuities, the 
method of ephemeris smoothing [3, 4] that allows us to correct slightly the interpolated coordinates and their derivatives 
so that at the junctions of the interpolation intervals they remain continuous in calculations with quadruple precision is 
used in the present work. This method has already been used in [3, 4] to smooth the ephemerides DE423 and DE430. 
However, it was little inaccurately described; therefore, below we present its correct description. 

Let us first describe the method of smoothing of the American ephemerides, that is, when the coefficients for 
interpolation of the object coordinates are given in the ephemerides. We designate by 0 , , nb b  the sought-after 

coefficients for the corrected (smoothed) coordinate. Then the smoothed coordinate and its kth-order derivative are 
calculated from the formula analogous to formula (1): 

 ( )( ) ( )
0 0( ) ( ) ( )kk k

n nx b p b pτ = τ + + τ  .  (7) 

The application of the examined method for any arbitrary interpolation interval consists in solution of the problem of 
conditional minimization 

 { }( ) ( )2 ( ) ( )
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where Ф is the Lagrange function, ( )i
Lx  and ( )i

Rx  are values of the ith order derivatives of the coordinate (i = 0 

corresponds to the coordinate itself) assigned at the left and right junctions of the interpolation interval, 1 2 2, ..., k+λ λ  

are the Lagrange multipliers, m is the maximum serial number of the corrected coefficient ( m n≤ ), k is the maximum 
order of the smoothed derivative, and 2 1k m+ ≤ , since the number of conditions should be less than or equal to the 

number of unknowns ib  (in the present work, we consider 2 1m k= + ). Here ( )i
Lx  is the half-sum of the ith left and right 

derivatives calculated from formula (1) at the left junction of the interpolation interval, and ( )i
Rx  is the analogous half-

sum calculated at the right junction of the interval.  
Condition of minimum (4) is the equality to zero of the partial derivatives of Ф with respect to the unknown 

parameters 0 1 2 2, , and , ...,m kb b +λ λ : 
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Re-designating these parameters in the same sequence by 0 2 2, ..., m kX X + + , we can write system (9) in the form 
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This system is linear for the unknown parameters, and its nonzero coefficients are determined by the formulas 
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Solving system (10), we find 1m +  coefficients ( 0, ..., )ib i m= . The remaining coefficients 1, ...,m nb b+  are equal to 

the corresponding initial coefficients 1, ...,m na a+  of the ephemerides; however, the number of bits in them increases to 

128 (quadruple precision). 
Using the above-described method, we calculated four variants of smoothing of the ephemerides DE431 for k = 

1, 2, 3, and 4, that is, up to the first, second, third, and fourth derivatives. In the last two variants, the number of the 
coefficients n in the smoothed ephemerides was increased to 7 for objects from Saturn to Pluto in the variant with k = 3 
and to 9 in the variant with k = 4 for objects from Jupiter to Pluto; moreover, the coefficients of the initial ephemerides 
missing for this purpose were set equal to zero. All calculations were performed with quadruple precision.  
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The ephemerides EPM2011 were smoothed using an analogous algorithm with re-designation of some 
coefficients, since in these ephemerides, the coefficients for interpolation of the object velocities rather than coordinates 
are given. Thus, the integration constant C was used as a zero-order coefficient of the sequence ia , and all other 

coefficients were normalized by multiplication by T/2. Hence, after smoothing (solving system (10)), the coefficient 0b  

represented the corrected integration constant, and all other renormalized coefficients ib  were divided by T/2. As base 

polynomials for smoothing, instead of the Chebyshev polynomials ip  their primitive functions iw  were used. By 

analogy with the ephemerides DE431, four variants of smoothing were performed for the ephemerides EPM2011. 
To check the difference between the smoothed and initial ephemerides, we calculated relative moduli of the 

differences /r rΔ  and /v vΔ  for the positions and velocities calculated for the initial and smoothed ephemerides. These 
quantities were calculated with the step 1/128Δτ =  for all interpolation intervals. Table 1 gives their average, 

( / , / )r r v vΔ Δ , and maximum values ( / , / )r r v vΔ Δ , for all intervals and objects (from Mercury to the Sun). The k 

value for the ephemerides EPM2011 in Table 1 has the same meaning, as for the ephemerides DE431 (the serial order 
of the derivatives with respect to the coordinates rather than velocities). 

As can be seen from Table 1, in the case of smoothing only to the first-order derivatives (k = 1), the coordinates 
calculated for the smoothed and initial ephemerides DE431 differ only in the 16th decimal place. The velocities differ 
approximately in the 13th–15th decimal places. In case of smoothing to higher order (k ≥ 2) derivatives, the difference 
between the smoothed and initial ephemerides increases. Thus, for k = 4 the difference can already be in the 8th decimal 
place. Therefore, it is not recommjunctioned to use the ephemerides smoothed up to the second and higher order 
derivatives for practical purposes. Below they are used only to estimate the contribution of discontinuities of the 
indicated derivatives to the decrease in the precision of numerical integration of the equations of motion. The smoothed 
variants of the ephemerides EPM2011 differ from their initial variants stronger than for the smoothed ephemerides 
DE431. 

To demonstrate a possible increase in the precision of numerical integration of the equations of motion, forward 
and backward prediction of motion was carried out for two asteroids with strongly different eccentricities of their orbits. 
The asteroids were chosen from the data presented on the site of the Minor Planet Center (http://minorplanetcenter.net) 
from objects discovered recently. They have the following orbit elements: asteroid 2014BT32 has a = 1.12 a. u., 
e = 0.14, and i = 8.5° (the revolution period is about one year), and asteroid 2014BH25 has a = 2.66 a. u., e = 0.69, and 
i = 9.6° (the revolution period is about 4 years).  

To predict their motion, perturbations from nine planets and the Moon were taken into account using 
ephemerides DE431 and EPM2011 in their initial and smoothed variants. Calculations were performed with quadruple 
and conventional double precisions. The Everhart method described in [15] and refined in [16] was used for numerical 
integration. In calculations with double precision, the method of the 15th order was used, and in calculations with 
quadruple precision, the method of the 31st order was used. Prediction was performed with a variable step both with and 
without adjustment of the integration step to the junctions of the ephemeris intervals.  

In the process of adjustment, the minimum interpolation interval, which in the ephemerides DE431 was 4 days 
(for the Moon), was considered, and the interpolation intervals for other objects were multiple to this value. Therefore, 
for ephemerides DE431, falling of the time moment with the Julian date multiple to four (after subtraction of the 
fractional half of the day) within the integration step was checked, and if such moment falls within the integration step, 

TABLE 1. Differences between the Smoothed and Initial Ephemerides 
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4.3·10–17 
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4.5·10–15 

1.8·10–13 
2.7·10–12 
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4.2·10–11 

2.5·10–9 
4.6·10–12 

6.0·10–9 
2.2·10–10 

1.7·10–8 
1.6·10–11 

2.1·10–8 
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EPM2011 
2.6·10–13 
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Such ephemerides together with step adjustment allow the motion of asteroids to be predicted with the highest possible 
precision provided by 128-bit floating-point numbers. It is obvious that such ephemerides in themselves must have 128 
bits, that is, comprise the coefficients calculated with quadruple precision. Therefore, it would be desirable to address 
the developers of modern ephemerides to publish ephemerides calculated with quadruple precision and to retain with 
the same precision the continuity of object coordinates and first derivatives. The continuity of higher-order derivatives 
is not necessary, since the influence of their discontinuities on the precision of numerical integration is completely 
eliminated by adjustment of the integration step size to the junctions of the ephemeris interpolation intervals. 
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